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PROPELLER WHIRL FLUTTER CONSIDERATIONS FOR 

V/STOL AIRCRAFT 

By Wilmer H. Reed III and Robert M. Bennett 

ABSTRACT 

Recent studies of propeller whirl flutter conducted at the 

NASA Langley Research Center are reviewed and extended to 

encompass operating conditions peculiar to V/STOL aircraft. The 

extension of previous work involves consideration of angle of 

attack, propeller thrust, and flapping blades. Experimentally 

determined whirl flutter boundaries using both measured and 

theoretical propeller derivatives are compared with theory. As 

a related dynamic problem, the response of propeller-nacelle systems 

to random atmospheriC turbulence is analyzed. 
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PROPELLER WHIRL FLUTTER CONSIDERATIONS FOR 

V/STOL AIRCRAFT 

By Wilmer H. Reed III and Robert M. Bennett 

IN'rRODUCTION 

The purpose of this paper is to review recent work on propeller 

whirl conducted at NASA Langley Research Center, to extend these 

studies to include V/STOL aircraft operating conditions, and to 

consider a related problem - the dynamic response of a propeller

powerplant system to random atmospheric turbulence. 

Until about 3 years ago the phenomenon known as propeller 

whirl flutter fell into the category of an interesting but academi:c 

problem of little practi.cal concern. The possibility that a 

precession-type instability could develop in a flexibly mounted 

aircraft propeller-powerplant system was mentioned in a 1938 paper 

by Taylor and Browne (ref. 1) which dealt primarily with the problem 

of vibration isolation. Following this paper, Wright Field personnel 

and other groups made propeller whirl flutter calculations for new 

aircraft as a matter of routine. The procedure was eventually 

abandoned, however, when it was found that in all cases considered 

very large margins of safety were indicated. Then in 1960, intense 

interest was focused on the problem as a result of two Lockheed 

Electra accidents. Wind-tunnel investigations conducted in the 

Langley transonic dynamics tunnel indicated that if stiffness in 

the engine support structure was severely reduced, say through 

damage, propeller whirl was possible; in the undamaged condition 
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the aircraft had an adequate margin of safety. The solution was 

to modify the Electra with sufficient redundant structure to preclude 

a large loss of stiffness from a single failure. Because of these 

experiences with the Electra and the sometimes radical departures 

from conventional methods of installing propeller-powerplant systems -

e!spE)cially'. bmV/ST0LLcdn;figurations (r:-:: :propeller whirl,:stabilj:ty( has,', 

once aga;inhec0me, a ,design consideration on new propeller aircraft. 

During and since the Electra investigation several generalized 

studies of propeller whirl have been published by-the NASA. These 

studies show the influence of various parameters affecting the 

stability of a simplified representation of propeller-powerplant 

systems. References 2, 3, and 4 analyze the whirl stability of an 

:Lsolated propeller system which is assumed to be flexibly mounted 

to a rigid back-up structure; more re cently, unpublished experimental 

data have been obtained for a similar system wherein both propeller 

aerodynamiC derivatives and whirl stability boundaries were measured. 

'rhese investigations were concerned primarily with operating con

ditions representative of high-speed (low angle-of-attack) flight. 

Under such conditions it can be shown that, from the standpoint 

of whirl stability, the effects of mean angle of attack and thrust 

of the propeller are relatively unimportant and can therefore be 

neglected. This leaves open the question of propeller whirl 

stability on V/STOL aircraft during the high-thrust, high-angle-of

attack transition maneuver. Thus, one of the aims of this paper is 

to extend the previous generalized studies to include the effects of 

thrust and high mean angles of attack. 
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SYMBOLS 

propeller chord at 0.75 blade radius 

number of propeller blades 

propeller pitching-moment coefficient 

total pitching-moment coefficient about pitch axis of 

system (see eq. (8) ) 

propeller yawing-moment coefficient 

thrust coeffictent, )T2 4 
p (Jl (2R) 2:1( 

propeller side-force coefficient 

propeller vertical-force coefficient 

offset of blade hinge axis 

- .. response il.l e due to unit impulse in v and w, respectively 
:I(Ix moment-of-inertia ratio, Iy 

frequency-response functions giving response in e to 
, 

unit sinusoidal inputs in v and w, respectively 

Ix mass moment of inertia of propeller about axis of rotation 

Iy mass moment of inertia of propeller_powerplant system about 

pitch axis 

J propeller advance ratio, 

k, ke 
aR illeR 

reduced-frequency parameters, k = 11' ke = -u-

distance from plane of propeller to pitch axis 

L scale of atmospheric turbulence 

R propeller radius 

Se rotational stiffness of powerplant mount about pitch axis 
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t, '-, T time 

u(t), v(t), w(t) longitudinal, lateral, and vertical components 

of turbulence velocity 

v, w flow angles due to turbulence, 

v(m), w(m) Fourier transforms of v(t) and w(t), respectively 

e(m) 

K: 

P 

0'2 

'r 

iPe, iPew 

angle of attack of propeller 

geometric blade angle at0;75R measured from propeller 

plane of rotation 

viscous damping ratio 

geometric pitch and yaw angles 

effective pitch and yaw angles in turbulent flow 

(see eq. (9)) 

Fourier transform of e(t) 

density-inertia ratio, 

air density 

mean-square value of turbulence velocity component 

nondimensional time, ~ 

power spectra and cross spectra, where subscripts denote 

the associated time histories 

propeller rotational frequency 

circular frequency 
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Subscripts: 

q differentiation with respect to e' 

r differentiation with respect to ~' 

e pitch direction 

yaw direction 

Primes denote differentiation with respect to T. 

Partial derivatives are denoted by double subscripts; 

for example, erne 
dCm dCm 

= ~ , Cm.q = dq ,and so forth. 
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DYNAMIC SYSTEM 

A schematic diagram of the idealized propeller-powerplant system 

to be considered in this paper is shown in figure 1. The system 

is mounted on two springs, Se and S*, located a distance I behind 

the plane of the propeller. These springs permit small angular 

deflections e and * of the propeller axis from its equilibrium 

position which is inclined at an arbitrary angle a from the free 

stream. Damping, which in an actual system would be introduced by 

hysteresis or friction in the mounts, fuel lines, electrical conduits, 

etc., is here simulated by equivalent viscous damping s* and se. 
Other variables shown in the figure are the airstream velocity U 

and, the rotational speed of the propeller D. 

MECHANIS1YI OF WHIRL FLUTTER 

Let us briefly review some basic aspects of propeller whirl 

flutter. The dynamic behavior of a propeller-powerplant system is 

governed by an interaction of the aerodynamic and gyroscopic moments 

on the rotating propeller, the inertia forces of the propeller

powerplant system, and the damping and elastic forces in the mount 

structure. If the propeller is replaced by an equivalent nonrotating 

mass and the aerodynamic forces are neglected, natural vibrations 

of the system about the pitch axis can occur independently of those 

about the yaw axis. On the other hand, if the propeller is replaced 

by an equivalent rotating mass, or flywheel, the associated gyro

scopic moments prevent the occurrence ot independent motions in 



- 7 -

either pitch or yaw so that the natural vibrations of the system are 

characterized by a precession or wobbling motion of the rotation axis. 

The variation of these so-called "precession" modes with rotational 

speed of the flywheel is illustrated in figure 2 for a system having 

symmetrical stiffness in pitch and yaw. Note that as the angular 

velocity n of the flywheel is increased, the frequency of one mode 

increases while that of the other decreases. As illustrated by the 

sketches on the right of the figure, the flywheel shaft follo·ws a 

circular path for each mode. For the higher frequency mode the 

direction of precession is the same as that of rotation and is thus 

referred to as the It forward" mode; al ternati vely, for the lower 

frequency mode the direction of precession is opposite that of 

rotation and is referred to as the "backward" mode. These modes 

can only be stable, for there is no mechanism by which the flywheel 

can add energy to the system. 

Let the flywheel be replaced by a propeller having the same 

angular momentum. Now when precession occurs, aerodynamic forces 

and moments are generated due to angle-of-attack changes on blade 

elements of the propeller. These forces and moments are governing 

factors that determine whether the precession modes of a given 

system will damp out following a disturbance, such as a gust, or 

will, build up with time .. until the .structure fails or its motion 

becomes limited by the presence of nonlinearities. It has been 

found that on conventional propellers whirl flutter invariably 

occurs in the backward whirl mode. 
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The generalized propeller whirl studies of references 2, 3, and 4 

show trends for many parameters that affect the stability of the 

system shown in figure 1. It is beyond the scope of this paper to 

summarize these trends; however, one type of stability-boundary plot 

is particularly enlightening and will be discussed with the aid of 

figure 3. This figure shows the pitch and yaw stiffness re~uired for 

stability for three values of structural damping (the physical 

properties of the system treated are tabulated in reference 3 under 

system 2A with J = 1.8). Both whirl-flutter and static-divergence 

boundaries are presented. An important feature shown, which appears 

to be characteristic, of most propeller whirl systems, is the 

pronounced sensitivity of the stability boundaries to small changes 

in structural damping when the damping is near zero. Thus, to assume 

zero structural damping for a propeller system, as is often done as 

a measure of conservatism in conventional wing flutter analyses, 

would probably lead to an unduly low estimate of the whirl flutter 

speed. Note also that the shapes of the whirl boundaries are 

likewise highly dependent on damping. 

COMPARISON OF THEORY AND EXPERIMENT 

To enable a better evaluation of theoretical methods for 

predicting whirl flutter, some experimental data have been obtained 

on a model which closely resembles the idealized mathematical 

model treated in references 2, 3, and 4. The model is shown in 

figure 4 and its physical properties are given in table I under 
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system 1. These data, obtained by Bland and Bennett (ref. 5), 

include measurements of both static aerodynamic propeller deri va-

tives and whirl-flutter boundaries. Typical results from the study 

are presented in figure 5, which shows the viscous damping required 

to prevent flutter plotted against a nondimensional velocity ratio. 

The calculated stability boundaries shown for comparison are 

based on three sets of propeller aerodynamic derivatives: theoretical 

derivatives evaluated by the methods of Ribner (ref. 6) and Houbolt 

and Reed (ref. 3), and the actual derivatives that were measured on 

the model (the damping derivative em was not measured, so it q 

was calculated by the method of ref. 6). 

It can be seen from the figure that the calculations based on 

measured derivatives are in excellent agreement with the experimental 

data, while those based on theoretical derivatives predict somewhat 

lower flutter velocities than were observed. Similar comparisons 

between theory and experiment were also indicated for other values 

of such system parameters as advance ratiO, inertia, and pivot-

:point location. 

V/STOL TRANSITION 

The propeller of a V/STOL vehicle, such as a tilt-wing aircraft, 

will undergo large changes in thrust and mean angle of attack during 

transition from hovering to high-speed flight. Since previous 

generalized studies (refs. 2, 3, and 4) have been concerned primarily 

'with the high~s:peed flight regime where angle-of-attack and thrust 

effects are known to have a negligible influence on whirl stability, 
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it is of interest to explore the possibility of encountering propeller 

whirl during low-speed transition maneuvers. For this purpose some 

whirl stability calculations have been made, utilizing experimental 

static propeller derivatives obtained by Yaggy and Rogallo in the 

Ames 40- by SO-foot tunnel for high angle-of-attack and thrust 

conditions typical of VTOL operations. (See ref. 7, propeller 1.) 

'I~hese derivatives, which were determined graphically from data 

presented in reference 7, are shown in figure 6 of the present report. 

It should be noted that since the damping deri vati ve was not 

measured in reference 7 it has been necessary to use theoretically 

determined values and make the assumption that angle-of-attack effects 

on Cmq are negligible. The system considered in these calculations 

is identified in table I as system 2. 

Figure 7 indicates the effect of angle of attack on the stiffness 

required to prevent flutter. The curves have been normalized with 

respect to the stiffness required at zero angle of attack. Little 

effect of angle of attack is noted for ~ = 13.00
, which corresponds 

to a low thrust condition (CT = 0 at ~ = 0); at ~ = 36.50, which 

represents a high thrust condition (CT = 0.24 at ~ = 0), a moderate 

Btabilizing effect is present. 

The effects of thrust coefficient for angles of attack up to 300 

are presented in figure S for several values of advance ratio. The 

figure indicates, as has been shown in previous studies, that 

propeller thrust effects are negligible for adyance ratios representa

tive of high-speed flight (J> 2.0). At low forward speeds during 
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transition, however, thrusting propellers are seen to have a 

d.estabilizipg influence on whirl flutter. 

The combined effects of thrust and angle of attack on the 

whirl flutter during a hypothetical transition maneuver are illustrated 

in figure 9. The assumed variations of a and CT with forward 

velocity are given on the left-hand side of the figure and the 

associated flutter boundary, in the form of damping required to 

prevent flutter, is on the right. (Velocity was determined by 

assuming meR = 76.8 so that V = 76
k

8 ft/sec.) Shown for com

parison is the flutter boundary computed on the basis of CT = 0 

and a = O. Although the overall effects of thrust and angle of 

attack are slightly destabilizing, the~.J.:arge !margin of; stability at 

low forward speeds would seem to indicate that propeller whirl 

problems would not occur during the transition maneuver. It should 

be pointed out that these conclusions are based on the assumption 

that Cmq is essentially independent of angle-of-attack changes 

during transition. 

FLAPPING HINGES 

Propellers with blades hinged to permit flapping in a plane 

perpendicular to the propeller rotation,aXis have been proposed 

for V/STOL applications. Some unpublished data obtained on such 

a system by E. F. Baird of Grumman Aircraft Engineering Corporation 

indicated a possible occurrence of whirl flutter in the forward mode 

as well as the backward mode which is typical of fixed blade designs. 

In an effort to gain further.insight into the problem, we have 
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conducted a brief exploratory wind-tunnel investigation on a simple 

model. 

The model, shown in figure 10, consists of a windmilling propeller 

attached to a rod which has freedom to pitch and yaw about a set of 

gimbal axes. The system has symmetrical stiffness that can be controlled 

by varying tension in a spring connected axially at the other end of the 

rod. Each propeller blade is attached to the hub by means of two 

·pins. When both pins are in position the blade is fi~ed; when one of 

the pins is removed the other pin becomes a hinge about which the blade 

is· free to flap. (See fig. 10.) In this way the blades can be hinged 

at either 0.08 or 0.13 of the propeller radius from the spin axis. 

Other physical properties of the model~ identified herein as system 3, 

may be found in table I. 

Whirl-flutter boundaries for the flapping-blade and fixed-blade 

conditions are presented in figure 11. Both forward and backward whirl 

instabilities were encountered. The system became unstable in the 

backward mode for the fixed blade and the 0.13R hinge offset, but 

instability developed in the forward mode with the smaller hinge offset 

of O.08R. Note that for flutter in the backward mode blade flapping 

had a significant stabilizing influence; just the opposite conclusions 

are indicated for flutter in the forward mode. In addition to fre

quency differences (backward whirl occurs at low frequency, forward 

whirl at high frequency), the two modes behaved differently in other 

respects. Whereas backward whirl instability was accompanied by 

divergent motions as predicted by linear theory, forward whirl 

instability was characterized by amplitude limited motions which could 

be excited when the disturbing force exceeded a threshold level. The 



- 13 -

implication to be drawn from these preliminary studies is that blade 

flapping, and possibly blade flexibility" can have either strong 

stabilizing or destabilizing influences on propeller whirl flutter. 

Additional research is required to further delineate these aspects of 

the problem. 

RESPONSE TO RANDOM ATMOSPHERIC TURBULENCE 

Previous sections of the paper have dealt with factors that affect 

the stability of propeller-powerplant systems. A related problem of 

interest in connection with dynamic loads and fatigue is the response 

of such systems to gusts and turbulence in the atmosphere. These 

loads may be significant even though the system is operating well on 

the stable side of its whirl-flutter boundary. 

The gust response problem and a method of analysis is illustrated 

in figure 12. The free-stream velocity is represented by a mean velocity 

U, upon which is superimposed unsteady velocity components u(t), v(t), 

and w(t). These time-dependent velocities produce unsteady forces and 

moments on the propeller which in turn cause pitch and yaw deflections, 

8(t) and ~(t), of the flexibly mounted system. If turbulence is con

sidered to be a stationary random process, a solution can be obtained 

for the response of the system to multiple random inputs u(t), v(t), 

and w(t). This requires specifications of the power spectra and cross 

spectra of the inputs, together witl1 a.set of frequency-response functions 

which define the response of the.sy'stem to sinusoidal variations of the 

gust velocity components. If the turbulence is considered to be iso

tropic, the cross-spectrum terms become zero and the equation for the 

power spectrum of response of the system in, say, pitch can be written 
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where ~w is the power spectrum of the v and w components of tur-

bulence and Hev and Hew represent the response in pitch to unit-

amplitude sinusoidal v and w inputs. It is assumed that Heu = O. 

(For derivation of equations, see appendix.) A graphical indication 

of the way in which typical power spectra and frequency-response functions 

for a system might vary with frequency is also shown in figure 12. It 

should be mentioned that the frequency-response function Hev - that is, 

the response in a vertical plane due to a horizontal gust input - is a 

measure of the aerodynamic and gyroscopic coupling produced by the 

propeller. The two peaks in the frequency-response curve occur at the 

backward and forward whirl frequencies. 

For purposes of illustration, figure 13 shows the calculated response 

to random turbulence for system 1, whose whirl-flutter boundary was pre-

sented in figure 5. The conditions chosen for these calculations are 

..JL = 2.0 and S = .. 0'0;., which, as can be seen in figure 5, fall well 
Rille 

within the stable region since the damping required for stability at this 

value is s = 0.002. The analytical expression for the turbulence 

spectrum assumed in the calculations is the approximation given in 

reference 8 for isotropic turbulence at high frequencies: 

'" _ 0.521a2 
',IIw -

L3/2 (ij)5/3 

where a2 is the mean-square value of wand L in the scale of tur-

bulence, assumed here to be 5,000 feet. It was also necessary to specify 

a propeller radius, which was taken to be R = 6.75 feet for these 

calculations. 
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The solid curve in figure 13 represents the power spectrum of 

the response of the system in pitch. (Since the system was assumed 

to have symmetrical stiffness, this curve also represents the 

response in yaw.) The dashed curve shown for comparison indicates 

the quasi-static response, that is, the response calculated by 

neglecting the time-dependent inertia, gyroscopic, and damping forces. 

The relative magnitudes of these two curves at a given frequency 

indicates the amplification of response due to dynamics of the 

system. As would be expected, the amplification is highest at 

frequencies corresponding to the ,natural whirl modes and becomes 

sharply attenuated at higher freCluencies. 

CONCLUDING REMARKS 

This paper has examined some potential problem areas relating 

to propeller whirl response and flutter on V/STOL aircraft. From 

limited stUdies presented herein on highly idealized systems the 

following general conclusions are indicated: 

1. Calculated whirl-flutter boundaries based on theoretical 

:propeller derivatives are in reasonable agreement with experimental 

data; those based on measured derivatives are in excellent agreement 

with experiment. 

2. For flight conditions representative of transition maneuvers, 

the effects of large angle of attack and large thrust coefficient are 

relatively unimportant from the standpoint of propeller whirl 

stability. 
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3. Flapping propeller blades can have significant stabilizing 

or destabilizing influences on propeller whirl and make possible the 

occurrence of flutter in the forward whirl mode. 

4. Power-spectral-density techniques offer a convenient means 

of analyzing the response of propeller-powerplant systems to random 

atmospheric turbulence. 
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APPENDIX 

DERIVATION OF EQUATIONS FOR RESPONSE OF 

PROPELLER-NACELLE TO RANDOM ATMOSPHERIC 

TURBULENCE 

Response Equations 

The problem considered is that of calculating the dynamic 

response of a propeller-nacelle system to random fluctuations 

of the free-stream velocity. The response quantities of interest 

are the pitch and yaw deflections of the system which is assumed 

to be flexibly mounted to,a rigid backup structure. 

Consider the free-stream velocity to be represented by the 

vector addition of the flight,velocity U and time-varying gust 

velocities u(t), vet), and wet) as is shown in figure 12. It 

will be assumed that the gust components act uniformly over the 

propeller disk and that the response induced by the u(t) component 

is negligible. Since the analytical procedures are the same for 

both pitch and yaw, only the pitch response will be treated. 

The pitch angle 8(t) of the system can be expressed in terms 

of arbitrary time 

vet) = ~ and 
U 

variations of flow angularity due to gusts, 

wet) = w(t), by means of the superposition integral 
U 
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where hey is the response in e -to a unit impulse in v and 

-similarly he;' is the response to a unit impulse in w. Note that 

the function hey is a coupling term which describes the response 

in a vertical plane associated with gusts in the horizontal plane. 

This term is a result of the aerodynamic and gyroscopic coupling 

moments on the propeller. 

The gust components considered herein are random functions 

which cannot be expressed explicitly in terms of time, as is 

re~uired in e~uation (1). If e~uation (1) is rewritten in terms 

of fre~uency rather than time, however, the problem becomes readily 

amenable to analysis by power spectral density techni~ues. (See 

ref. 8 .) 

The Fourier transform of e(t) is defined as 

S(m) =- lim fT e(t)e-iCDt dt 
T -700 -T 

Substitution of e~uation (1) for e(t) into e~uation (2) gives 

S(m) =- v(m)Hev(m) + w(m)Hew(m) 

where v(m) and w(m) are Fourier transforms of the flow angles 

vet) and ;'(t), respectively, and Hev(m) and Hew(m) are 

fre~uency-response functions which describe the pitch response of 

the system to unit sinusoidal inputs in v and W. 
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The power spectrum of the response ~8(m) is related to its 

Fourier transform by the expression 

(4) 

where e* is the complex conjugate of e. From equation (3) the 

spectrum of the response then follows as 

= ~_IH _1 2 
+ ~e-IH _1 2 

+ ~ __ H -H*e- + ~--He-H*e- (5) v ev w 8w vw ev w wv w v 

where ~vw and ~wv are the cross spectra between v and w 

components of turbulence. Henceforth it will be assumed that the 

turbulence is isotropic so that the following simplifications 

can be introduced 

Thus equation (5) reduces to 

~- = ~v w 

~-- = ~-- = 0 vw wv 

( 6) 
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Frequency-Response Functions 

The frequency-response functions in equation (6) can be derived 

by including a sinusoidal gust forcing function on the right-hand 

side of the equations of motion for the system. For convenience 

the two-degree-of-freedom symmetrical system considered in reference 2 

will be treated as an example. Wi th slight modifications of the 

notation in reference 2, the equations of motion for the propeller-

nacelle system with gust terms included become 

=fc e +C e'+c \\f +C \\f') 
\: me g mq g m\\f g mr g 

,Ir" _ JH e' + 2i',lrk .. ,lr' + k?,lr (c ,Ir + C ,Irl 
'I' :''I'--IJf 'l' -IV 'I' = \: me'l'g mq'l'g c e 

~g 

where a viscous-type damping in the mount system has been assumed. 

~~he aerodynamic coefficients with bar superscripts denote the total 

moments about the elastic axes of the system due to aerodynamic 

forces and moments on the propeller and are defined as follows: 

c~ = K@~ l C ) 
2R Z1\r 

Cm = K [?mq ~(~ CZq + Cme - iR CZe)] q 

Cm K [Cilly - "" -~0~ -iR CZ\\f)] (8) 2R CZr r 
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The terms 8g and ~g in equation (7) represent the resultant air~ 

stream angles at the propeller associated with the combined effects 

of angular deflections of the system plus gust velocities. 

-8 = 8 g - w 

Assume a simple harmonic variation in the -w gust component and 

zero disturbance in the v component. The forcing function and 

the resulting response then become 

'iT = 0 

8 8 ikT = oe 

~ = ~oeikT (10) 

where k = roR is the\nondiri1ensional ,dr,:i,. vingfreqv.ency atld' 'T= URt is 
U 

the nondimensional time variable. 

Equations (9) and (10) substituted into equation (7) lead to 

the following pair of simultaneous equations for 80 and ~o: 

(A + iB)80 + (C + iD)~o = (E + iF)wo 

-(C + iD)8 0 + (A + iB)~o = (-C + iK)wo 

where with the assumption of structural symmetry k8 = k~ and 

~8 = ~~ =~, the coefficients in equation (11) are 

(11) 
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2 2 -
A ::; ke - k - Cme 

B ::; (2ske - Cm )k 
q 

C ::; -C~ 

H -
D ::; J - Cmr 

E ::; -Cme 

F = -Cm k q 

-K ::; Cm k 
r 

The frequency-response functions for e and ~ are by 

definition 

But since the system under consideration is symmetrical in pitch 

and yaw the second of equations (13) can be written 

and 

() 
eo 

Thus, from a simultaneous solution of equations, 11 • for 
'Wo 

~o 

Wo 
the frequency-response functions may be expressed in the 

form of the following complex ratios~ 

(12) 

(14) 



or 

where 
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R - 2 
A12 + B12 

= 8w 
D.R2 + D.I2 

Rev 
2 A22 + B22 

:. 

D.R2 + D.I2 

Al = AE + C2 - BF + DK 

Bl = BE + CD + AF - CK 

A2 = CE <- AC - BK - DF 

B2 :. DE - BC + AK + CF 

D.R = A2 + c 2 _ B2 _ D2 

D.I :. 2AB + 2CD 

(16) 

With these fre~uency-response functions and an assumed form of the 

spe ctrum of turbulence (see ref. $, for example) the spectrum of 

resulting response of the system can be calculated by means of 

e~uation (6). 
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TABLE I.- SUMMARY OF SYSTEM CHARACTERISTICS. 

System 

1 2 3 
1-. 

Ix 
0.135 0.135 0.583 Iy 

bO.75R .216 .196 .160 R 

1 .346 ·350 .250 R 

K .0466 .0504 1.78 

B 4 3 4 

J 2.66 varies 1.1 

Se/S'i! 1.0 1.0 1.0 
.. ---.'"'-., .. ..,....,.,-.......,.".-~ .... ._- ---....... -~ ......... ---.. '.-•.. ~.~~'-~ .. -
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Figure 2.- Natural precession frequencies (me = ~). 
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Figure 3.- Pitch and yaw stiffness required. 
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Figure 4.- Model used for measuring stability boundaries and aerodynamic derivatives (system 1). 



~ 

.03r THEORY 
MEASURED DERIVATIVES 

.02 

.01 

o 

- - RIBNER DERIVATIVES 
---- HOUBOLT-REED DERIVATIVES 

o EXPERIMENT /'/ 
// 

/1 / 

STABLE REGION / / 

// 
/'l 

/// 

///0 Q 
/,/ 

'/ 

2 

--1L 
RWe 

3 

Figure 5.- Comparison o£ theoretical and experimental whirl flutter boundaries 
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4 

NASA 



-.2 

Cmq 

-.1 

-lOr ___ ............ . 'l-- '" 
cZe \, 
~05 \ 

\ 

o o 

.06 
$= 13°, CT(a =0) =0 

--- °=365° CT =24 /J ., (a =0) . 
f 

. 02 ----- ............................. 
-- - ......... , C

rne 
.01 

--- ........... ------ ---
I I I I I I I I I 

o 20 40 60 80 0 20 40 60 80 
a,DEG 

(a) Ef~ect o~ angle o~ attack, J = 0.75. NASA 

Figure 6.- Propeller aerodynamic derivatives used in analysis o~ transition maneuvers for system 2. 
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Figure 6.- Concluded. 
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Figure 7.- Effect of angle of attack at constant blade angle (system 2, J = 0.75, ~ = 0.05). 

NASA 



2.5r 

7 TAKEOFF 

2.0 

STABLE REGION 

1.5 
S8 ;rrr71l 

.5 

o .08 .16 .24 
CT 

NASA 

Figure 8.- Effect of thrust coefficient (system 2, S = 0.05, ~ = 0). 
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Figure 9.- Effect of transition program (system 2, 0 $ J $ 1.5). 
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Figure 12.- Response of propeller system to random turbulence. 
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Figure 13.- Pitch angle response to atmospheric turbulence (system 1, ~ = 0.05, 

~e = 2.0, J = 2.66)_ 
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